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We obtain the solutions, under the Oseen and Boussinesq approximations, for the 
flow field disturbance due to a line singularity in an otherwise uniform, horizontal, 
inviscid, incompressible flow of a vertically stratified fluid. The results obtained 
show no upstream influence for those singularities across which V2$ + ( N / U ) 2 $  
is continuous. Doublet and vortex singularities are examples of these. Uniform 
flows past doublets and vortices are considered for a range of internal Froude 
numbers, including the calculation of the pressure distributions and drag for the 
doublet. An application of the vortex solution to flows in the /?-plane is discussed. 

1. Introduction 
Singular solutions to Laplace’s equation in two dimensions are used extensively 

to  obtain irrotational flows over two-dimensional obstacles. We seek here solu- 
tions for the analogues in stratified flow of the irrotational doublet and vortex as 
well as other line singularities. We initially seek singular solutions which, away 
from the origin, are weak perturbations on a uniform horizontal flow of a fluid 
whose (conserved) density field decreases linearly with height. Those singularities 
across which Vz$+ (N/U)2$ is continuous are shown to be consistent with no 
upstream influence and their solutions may be regarded as solutions, under the 
Boussinesq approximation, of Long’s model. Therefore, for these singularities the 
restriction that the perturbation be small is lifted. The solutions are obtained in 
integral form and so differ from the solution obtained by Miles (1968) for stratified 
flow past a circular cylinder. Miles’ solution is in the form of an infinite series 
of cylindrical lee-wave functions which are themselves composed of an infinite 
series of products of Bessel and trigonometric functions. Miles’ solution 
apparently decays more rapidly upstream than that obtained here. The integral 
form of our solutions is well suited for superposition, which will also be discussed. 

2. Specification of the problem 
We consider a slightly disturbed, incompressible, horizontal, linearly stratified, 

inviscid flow. The perturbation (unprimed) quantities are related to  the total 
(primed) quantities as follows: 

uf = u+u = -a(-  uz+$) iaz,  wf = w = a$iax, 
$’ = - Vz+$, p’ = p o r ~ - p ~ + ( / ? / ~ ) $ l ,  
P f  = Po --POP + *P0PP2 +P 
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For a small perturbation, the equation governing the behaviour of u under the 
Boussinesq approximation is as follows: 

a(v2U)px + a2 aulax = 0, (2 1 
where a2 = (N/U)2 = /3g/U2. We seek solutions of (2) which are even ( E )  or 
odd (0) functions of z of the form 

Substituting (3) into ( 2 )  and following Janowitz (1973) we find that 

UZ,  o = loa A E ,  (c, s )  d~ + j: A,, exp L ( K ~  - a2)+ x] (c, s )  d~ for x < 0, 

(4 a)  

+j~a{~, , . cos[ (a2-~2) lx~  +C,,osin[(a2-Ii2)axj}(c,s)dK for z 2 0, 

(4 b )  
where (c, s) = (cos Kz7 sin Kz).  

We shall require that the upstream and downstream solutions for u, au/ax and 
a2u/ax2 be continuous a t  x = 0 for all z > 0. The nature of the discontinuity in 
u, au/ax or a2u/ax2 at z = 0 will determine the nature of the flow disturbance. We 
shall make extensive use of Fourier transforms. All the necessary formulae are 
present in Erdhlyi et al. (1954). 

3. The general singularity 

discontinuity a t  the origin as follows: 
We now temporarily drop the subscripts and include the singularity as a 

u-(0,z) - u+(O, 2 )  = Hop), 
au-(o, z ) p X  - au+(o, X)px = H1(z), 

82u-(O, x)/ax2 - a2u+(o, z,/ax = H2(z), 

where the H,(z) (n = 0 ,1 ,2 )  are functions which vanish for z > 0. We define 
H,(K) as follows: 

(6) 

Substituting (4) and (6) into (5) leads to the following: 

I- 
I- 

A ( K )  - B(K)  = H,(K) for K < a, 
A ( K ) - B ( K ) - C ( K )  = H,(K) for K > a, 

- (a2-K2)+C(K) = H,(K) for K < a, 
(K2- a2)* ( A ( K )  + C(K) )  = Hl(K) for K > a, 

-(K2-a2)B(K) = H2(K) for K < a, 
(K2-a2) ( A ( @ - C ( K ) )  = H,(K) for K > a. 



Line singularities in unbounded stratiJied $ow 45 7 

Solving these equations for A ,  B and C we find 

From (8) and (9) ,  below, the following conclusion may be drawn. If the quantity 
V2$+ ( N / U ) 2 $  ( = L$) is continuous across the singularity, then there is no 
upstream influence; the resulting solution is thus a solution of Long’s model, 
under the Boussinesq approximation ( 5  5 ) ,  and is valid at  all points for all magni- 
tudes of the disturbance. This follows from the fact that if L$ is continuous then 
H,(K) - H2(K)/(K2 - a2) is identically zero; the columnar disturbances in (8) 
then drop out of the solution. On the other hand, if L$ is discontinuous, then 
upstream influence occurs and u+(x, 0 )  is singular for all x 2 0 ;  upstream influence 
in a vertically unbounded domain is apparently produced only by an obstacle 
which is unbounded in the downstream direction. The quantity L$ can be 
interpreted as ‘potential vorticity ’ composed of the vorticity and ‘available ’ 
potential vorticity. If the singularity is a line source of this ‘potential ’ vorticity 
then upstream influence occurs. 

We now specify the general form of the H,(K). If the H,(z) were non-zero for 
0 < z < 6, then their transforms would be analytic and expandable in power 
series in K ;  in our case 6-t 0. Therefore, for uE(x, z )  (uo(x, 2)) we take H,(K) to be 
a polynomial in K2m (K2m+l) for m = 0,1,2,  ... . This is possible since, for 
2 > 0, 

Now 9, a$/ax and a2$/ax2 will be obtained by integrating (8) with respect to z 
and then differentiating with respect to x. For these functions to be continuous 
for z > 0 we further require that 

H,(O) = H2(0) = H2(a) = 0. (9) 

Before proceeding to the solution for the doublet and vortex we obtain, as 
a special case, the source solution of Wong & Kao (1970) by taking H, = - Q ,  
HI = H2 = 0 and cos Kz in (8). This yields 

u(x, x )  = - Q sin (az) /z  + U(x) Q6(z). 

Since H,-H2/(K2-a2) is not zero (= -Q), upstream influence is present; this 
solution may be regarded as a far-field solution for small Q .  
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We now proceed to two singularities which by their near-field behaviour do 
not produce upstream influence and hence give solutions valid at all points for 
all magnitudes. 

4. The doublet and vortex singularities 
We specify the doublet and vortex singularities in the stratified case by 

requiring that their behaviour in the neighbourhood of the singularity be identical 
with that of their irrotational analogues. For a potential doublet of strength P 
aligned along the x axis 

We require that u*(O, z )  --f u*(O, z )  as z -+ 0. This implies that their transforms are 
identical at x = 0 for K- tm.  Setting x = 0 in (S ) ,  choosing cosKz and 
H, = H,(K2), and letting K+m, we require 

( 1 1 )  

00 h ' 2  
u-(x,z) = P (K2 - a2)i exp [(K2-a2)4x] cos KzdK, ( 1 2 4  

exp [ - (K2 - a2)3x] cos Kz dK 
K2 la (K2-a2)4 u+(x,z) = P 

sin [(a2 - K2)3x] cos Kz dK. (12  b)  
a K2 

Integrating these with respect to z leads to 

exp [(K2-a2)3x] sin KzdK, 
" K  

(K2 - a2)* 
$-(x, 2) = - P 

exp [ - (Kz  - a2)*z] sin Kz dh' 
" K  

K 
(K2 - a2)3 / a  

$+(x,z) = - P  

+2PlOa (a2-K2)9sin[(a2- K2))x]sin KzdK. 

Equations (12 )  are our solution for a doublet of strength P at (0,O). We note that 
a uniform flow of speed U always accompanies this solution. The perturbations 
vanish as x + - 03 and these solutions may be regarded as solutions to  Long's 
model under the Boussinesq approximation (§ 5). This implies that the require- 
ment that the perturbation be small may be dropped. 

We can show that for -ax B 1 and B a x  

$-(x, z )  + - Psin (az)/x, 
u-(x, 2) --f aP cos (az)/x. 

( 1 3 4  

(13 b )  
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FIGURE 1.  The pressure distribution on the surface of the cylinder for various values of iii, 

where C, = 2(p‘+pogz-p0)/poU2,  T = z /H,  H = NH/U.  

Miles’ (S968) solution requires that upstream the perturbation stream function 
decay more rapidly than r-4. Hence the perturbation radial velocity should decay 
more rapidly than r-3, which, at z = 0, differs from (13 b ) .  To discuss the flow past 
a circular cylinder we consider a doublet of strength - P in the uniform flow. We 
define D as ( P / U ) h  and define y as NDIU. We consider the flow for y = 0.5, 1.0, 
1.4 and 2.0. The stream function and the velocity field are computed from (12). 
The body streamline differs little from a circular cylinder. As 01 increases, the body 
becomes slightly elongated in the flow direction. For y = 0-5,1-0, 1.4 and 2.0, the 
height H of the body streamline is equal to l*lOD,l. lSD, 1.050 and 0.930. The 
pressure distribution along the body streamline is obtained from the Bernoulli 
equation along the body streamline: 

p’ +Po92 + $po(u’2 + w ’ ~ )  = Po + U2.  
The drag per unit width is obtained by integrating the pressure distribution over 
the body streamline for z 2 0. We define pressure and drag coefficients and E as 

Cp = ~ ( P ’ + P ~ P - P ~ ) I P ~ U ~ ,  follows: 

C, = 2D‘/pn U2H,  
E = N H / U .  

In figure 1, we plot C, us. Z ( = z / H )  for a range of 5. In this figure Z increases from 
zero at  the upstream stagnation point to one at the top then decreases to zero a t  
the downstream stagnation point. In  figure 2, we plot C, us. E. The drag coeffi- 
cient obtained by Miles coincides with our results for 5 < 1.3. The flow patterns 
obtained are quite similar to Miles’ and will not be presented here. We note that 
our results show that reversed flow occurs in the lee-wave field at some value of Z 
between 1-1s and S.47. Miles fixed this value at  1.27. At larger values of E ,  owing 
to static instability the results presented in the figures may not apply. 

The flow disturbance due to a continuous distribution of doublets along the 
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FIGURE 2. The drag coefficient of a semicircular cylinder for various 

values of a, where CD = 2D'/p, U2H.  

x axis may be easily obtained using (12). Consider a continuous distribution of 
doublets with density P'(xo) on the x axis between xo = - L and xo = 0. Using 
(12 c,  c l )  and defining $* = $ * I p = l  we find 

$ ' = - U  z + s" P'(x,) $+(x - xo, 2) ax, 
-L  +I: ~ ' ( x , )  ?-(x - xo, z )  axo for - L < x < 0, 

$'(x,z) = - Uz + $+(x - x,, z )  P'(xo) axo for a: > 0. LL- 
For some cases, the integration with respect to xo can be carried out before that 
with respect to K .  For example, if P' = - P/L, the stream function becomes 

at 
= - ~z +: lom (et(z+L)- etz) sin [(a2 + t2)izl- t for x < - L, (14a) 

at 
(2-etz-e-t(z+1))sin[(a2+t 2 ) i Z I T  

- ~ / ~ { l - c o s [ t ( x + L ) ] } s i n [ ( a 2 + t 2 ) b z ] -  at for - L  < x < 0, (14b) 
t 

where we have introduced the integrationvariable t = I K a  - a21. The bodystream- 
line is approximately a rectangle of height rrPIUL and width L for small aL. We 
next consider the disturbance due to a line vortex. 
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d ( x ,  x )  = - I'z/2n(x2 + 22) = - - /om e-glzi sin Kz dK. 

The stratified analogue is obtained by taking sin Kz and H, = H,(K2"+l) in (S), 
setting x = 0 and requiring that the behaviour of the Fourier transforms be 

For the potential line vortex 
r 

27r 

identical for large K.  We find 

H2/2(K2-a2) +H1/2(K2-a2)~-+- r/27r, 

H2/2(K2- a2) + H,/2(K2 - a2)t - H,+ - r / 2 ~ .  

Hence, H, = 0, Hl = -I'K/n, H2 = 0. 

Thus, for the vortex, 

exp [(K2-a2)*x]sinKzdK, 
r m  K 
2nJa (K2-a2)* 

r m  K 
2n / a  ( K 2  - a2)* 

" K  

u-(x, z )  = -- 

u+(x, z )  = -- exp [ - (K2 - a2)9x] sin Kz dK 

sin [(a2- K2)&x] sinKzdK. +'s 7~ 0 (a2-K2)$ 

Integrating these functions with respect t o  z yields, for the vortex, 

exp [(K2-a2)*x] cos KzdK, 
1 

@(x, z )  = -- 
:Jam (K2-a2)S 

"sin [(a2- K2)*x] 
$+(2,z)  = - cos Kz dK 

exp[- ( K ~ - c x ~ ) ~ ~ ] c o s  KzdK. 
r m  1 

-%Ja (K2-aZ)f 

We note that again the columnar disturbance vanishes and we may regard our 
solutions as solutions to Long's model under the Boussinesq approximation ( 3  5). 

We note that both the doublet and vortex solutions decay vertically as (az)-f. 
For the Boussinesq approximation to be valid the disturbance must decay in 
distances small compared with the scale height 1//3. This requires that 
a//3 = g/UN 9 1. This condition is well satisfied by oceanic flows and somewhat 
less so by atmospheric flows. 

The size D of a potential vortex in a uniform flow, which may be defined as the 
distance from the singularity to the stagnation point, is I rl/2nU. An appropriate 
internal Froude number ( U / N D  = I/aD) is 2nU/lrl a. In  figure 3, we plot the 
flow past a vortex with (a )  4 = 0.667 and ( b )  Fi = 1.0. In  each case the circulation 
is negative: distances have been non-dimensionalized with respect to l/a and 
the total stream function with respect to U/a.  

We observe that ( 2 )  also governs the perturbation to a horizontal, homo- 
geneous, eastward current of uniform depth H in the /3-plane, in the absence of 
Ekman suction; we interpret (a2, x ,  w) as (/?/a, y, w), where y and v are the north- 
ward variables, f the Coriolis parameter and, in this context, /3 = df/dy. If a bump 
of volume V and horizontal dimension L [ < (U//3)4] were located at the bottom 
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FIGURE 3. Flow past a vortex with (2, z, II.) G a(d, z’, @ / U ) .  
(a)  2nUlI’a = - 0.67. ( b )  BnUlI’u = - 1.00. 
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of the layer, about the origin, and if the flow away from the bump were deter- 
mined primarily by the circulation induced by the bump, which would be of order 
- f V / H ,  then the vortex solution and figure 3 would characterize such a flow. In  
reality, Ekman suction would cause this disturbance to disappear at  a distance 
Lo of order U/fES, where E is the vertical Ekman number. Our solution would be 
meaningful in this context if (U/p)a < Lo. 

To return to the stratified flow situation, we now derive Long's model under 
the Boussinesq approximation. 

5. The Boussinesq approximation to Long's model 
The vorticity equation for a two-dimensional inviscid incompressible flow is 

I = --Vpx 1 (a+@) 
P 

where a = Dv/Dt. If lua,l, Iwa,J < lwgl, which is the essence of the Boussinesq 
approximation for steady flow, (16) reduces to 

We note that, in the more usual Boussinesq approach, p is replaced by po in the 
denominator on the right-hand side of (17). Following Long (1953), we integrate 
the above equation along a streamline and find 

aw au 1 dp --- +- -92 = F(qk). ax az pay? 

If, far upstream, $'+- UZ,, 
p' +po e-P% = pa eBk'lu, 

then the governing equation for the disturbance stream function becomes 

V2y?+a2qk = 0,  (18) 

with $-+ 0 as x+ - co. Under the more usual Boussinesq approach, linear stratifi- 
cation and uniform flow far upstream also leadto (18). Thus, under the Boussinesq 
approximation the disturbance to a uniform linearly stratified flow is governed 
by (18) without restriction on the magnitude of the disturbance save that it 
vanish far upstream; our vortex and doublet solutions do satisfy this require- 
ment. Under Long's model (without the Boussinesq approximation) an 
upstream condition requiring linear stratification with u -+ U/(  1 - pzO)* leads to 
(18)  with the displacement function as the dependent variable. The Boussinesq 
approximation to Long's model then changes the upstream velocity condition 
to one of uniform flow. It is in this sense that our vortex and doublet solut' ,ions are 
solutions to Long's model under the Boussinesq approximation. 
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6. Conclusions 
Solutions for line singularities in an unbounded, uniform, linearly stratified 

flow have been determined. Those singularities across which Ly% is conserved 
produce no columnar disturbances; doublet and vortex singularities, of this type, 
have been studied, including the pressure distribution about and drag of a 
doublet. The vortex singularity may model flow past simple topography in the 
/3-plane. 
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